
mh5_robot
Release C.1

Alex Sonea

May 13, 2021

MH5 ROBOT ROS PACKAGES

1 Package Description 3
1.1 mh5_hardware package . 3

2 Package Reference 5
2.1 mh5_hardware reference . 5

2.1.1 Main classes . 5
2.1.1.1 class MH5DynamixelInterface . 5
2.1.1.2 class MH5I2CInterface . 8

2.1.2 Supporting classes . 9
2.1.2.1 class MH5PortHandler . 9
2.1.2.2 class Joint . 10
2.1.2.3 class LSM6DS3 . 15

2.1.3 Syncronization Loops . 16
2.1.3.1 class LoopWithCommunicationStats . 16
2.1.3.2 class GroupSyncRead . 19
2.1.3.3 class GroupSyncWrite . 20
2.1.3.4 class PVLReader . 20
2.1.3.5 class PVWriter . 21

2.1.4 ros_control Hardware Interface . 22
2.1.4.1 class JointHandleWithFlag . 22
2.1.4.2 class ActiveJointInterface . 23
2.1.4.3 class CommunicationStatsHandle . 23
2.1.4.4 class CommunicationStatsInterface . 24

2.2 mh5_controllers reference . 24
2.2.1 class ActiveJointController . 24
2.2.2 class ExtendedJointTrajectoryController . 26
2.2.3 class CommunicationStatsController . 26

2.3 mh5_director reference . 27
2.3.1 class Director . 27
2.3.2 class Portfolio . 28
2.3.3 class Script . 29
2.3.4 class Scene . 29
2.3.5 class Pose . 29

3 Indices and tables 31

Index 33

i

ii

mh5_robot, Release C.1

This repo contains ROS packages for working with the MH5 humanoid robot.

MH5 ROBOT ROS PACKAGES 1

mh5_robot, Release C.1

2 MH5 ROBOT ROS PACKAGES

CHAPTER

ONE

PACKAGE DESCRIPTION

1.1 mh5_hardware package

This package follows the ros_control design model. It contains the highly specific hardware access functions
needed for:

• configuring and communicating with the Dynamixel actuators used by the robot

• configuring and reading information from the on-board IMU unit

• (to-be) configuring and retrieving information from the Force Sensitive Resistors (FSRs) in the feet

class MH5DynamixelInterface : public RobotHW
Main class implementing the protocol required by ros_control for providing access to the robot hardware.

This class performs communication with the servos using Dynamixel protocol and manages the state of these
servos. It uses for this purpose Dynamixel SDK (specifically the ROS implementation of it) with the only
exception that for port communication it uses a custom subclass of PortHandler in order to be able to
configure the communication port with RS485 support, because the interface board used by RH5 robot uses
SC16IS762 chips that control the flow in heardware, but need tto be connfigured in RS485 mode via ioctl.

The class should be instantiated by the pluginlib once the main mode is started and initiates the load of the
CombinedRobotHW class.

The class uses the information from the param server to get details about the communication port configuration
and the attached servos. For each dynamixel interface the following parameters are read:

The class registers itself with the pluginlib by calling:

PLUGINLIB_EXPORT_CLASS(mh5_hardware::MH5DynamixelInterface, hardware_
→˓interface::RobotHW)

3

https://github.com/ROBOTIS-GIT/DynamixelSDK

mh5_robot, Release C.1

4 Chapter 1. Package Description

CHAPTER

TWO

PACKAGE REFERENCE

2.1 mh5_hardware reference

2.1.1 Main classes

2.1.1.1 class MH5DynamixelInterface

class mh5_hardware::MH5DynamixelInterface : public RobotHW
Main class implementing the protocol required by ros_control for providing access to the robot hardware.

This class performs communication with the servos using Dynamixel protocol and manages the state of these
servos. It uses for this purpose Dynamixel SDK (specifically the ROS implementation of it) with the only
exception that for port communication it uses a custom subclass of PortHandler in order to be able to
configure the communication port with RS485 support, because the interface board used by RH5 robot uses
SC16IS762 chips that control the flow in heardware, but need tto be connfigured in RS485 mode via ioctl.

The class should be instantiated by the pluginlib once the main mode is started and initiates the load of the
CombinedRobotHW class.

The class uses the information from the param server to get details about the communication port configuration
and the attached servos. For each dynamixel interface the following parameters are read:

The class registers itself with the pluginlib by calling:

PLUGINLIB_EXPORT_CLASS(mh5_hardware::MH5DynamixelInterface, hardware_
→˓interface::RobotHW)

Public Functions

MH5DynamixelInterface()
Construct a new MH5DynamixelInterface object. Default constructor to support pluginlib.

~MH5DynamixelInterface()
Destroy the MH5DynamixelInterface object. Provided for pluginlib support.

bool init(ros::NodeHandle &root_nh, ros::NodeHandle &robot_hw_nh)
Initializes the interface.

Will call the protected methods initPort() and initJoints() to perform the initialization of the Dynamixel
port and the configuration of the joints associated with this interface. If either of these fails it will return
false.

Parameters

5

https://github.com/ROBOTIS-GIT/DynamixelSDK

mh5_robot, Release C.1

• root_nh – A NodeHandle in the root of the caller namespace.

• robot_hw_nh – A NodeHandle in the namespace from which the RobotHW should read
its configuration.

Returns true if initialization was successful

Returns false If the initialization was unsuccessful

void read(const ros::Time &time, const ros::Duration &period)
Performs the read of values for all the servos. This is done through the sync loops objects that have been
prepared in init(). The caller (the main ROS node owning the hardware) would call this method at an arbi-
trary frequency that is dictated by it’s processing needs (and can be much higher than the frequency with
with we need to syncronise the data with the actual servos). For this reason each sync loop is responsible
to keep track of it’s own processing frequency and skip executing if requests are too often.

In this particular case this method asks the following loops to run:

• Position, Velocity, Load (pvlReader_)

• Temperature, Voltage (tvReader_)

Parameters

• time – The current time

• period – The time passed since the last call to read

void write(const ros::Time &time, const ros::Duration &period)
Performs the write of position, velocity profile and acceleration profile for all servos that are marked as
present. Assumes the servos have already been configured with velocity profile (see Dyanamixel manual
https://emanual.robotis.com/docs/en/dxl/x/xl430-w250/#what-is-the-profile). Converts the values from
ISO (radians for position, rad / sec for velocity) to Dynamixel internal measures. Uses a Dynamixel
SyncWrite to write the values to all servos with one communication packet.

Parameters

• time – The current time

• period – The time passed since the last call to read

Protected Functions

bool initPort()
Initializes the Dynamixel port.

Returns true if initialization was successfull

Returns false if initialization was unsuccessfull

bool initJoints()
Initializes the joints.

Returns true

Returns false

template<class Loop>
Loop *setupLoop(std::string name, const double default_rate)

Convenience function that constructs a loop, reads parameters “rates/<loop_name>” from parameter server
or, if not found, uses a default rate for initialisation. It also calls prepare() and registers it communication
handle (from getCommStatHandle() with the HW communication status inteface)

6 Chapter 2. Package Reference

https://emanual.robotis.com/docs/en/dxl/x/xl430-w250/#what-is-the-profile

mh5_robot, Release C.1

Template Parameters Loop – the class for the loop

Parameters

• name – the name of the loop

• default_rate – the default rate to use incase no parameter is found in the parameter
server

Returns Loop* the newly created loop object

bool setupDynamixelLoops()
Creates and initializes all the loops used by the HW interface:

• Read: position, velocity, load (pvl_reader)

• Read: temperature, voltage (tv_reader)

• Write: position, velocity (pv_writer)

• Write: torque (t_writer)

Returns true

Protected Attributes

ros::NodeHandle nh_

const char *nss_

std::string port_

int baudrate_

bool rs485_

double protocol_

mh5_port_handler::PortHandlerMH5 *portHandler_

dynamixel::PacketHandler *packetHandler_

mh5_hardware::PVLReader *pvlReader_
Sync Loop for reading the position, velocity and load.

mh5_hardware::TVReader *tvReader_
Sync Loop for reading the temperature and voltage.

mh5_hardware::PVWriter *pvWriter_
SyncLoop for writing the position and velocity.

mh5_hardware::TWriter *tWriter_
SyncLoop for writing the torque status command.

hardware_interface::JointStateInterface joint_state_interface

hardware_interface::PosVelJointInterface pos_vel_joint_interface

mh5_hardware::ActiveJointInterface active_joint_interface

mh5_hardware::CommunicationStatsInterface communication_stats_interface

int num_joints_

std::vector<Joint*> joints_

2.1. mh5_hardware reference 7

mh5_robot, Release C.1

2.1.1.2 class MH5I2CInterface

class mh5_hardware::MH5I2CInterface : public RobotHW
Main class implementing the protocol required by ros_control for providing access to the robot hardware
connected on an I2C bus.

This class performs communication with the devices using ioctl.

The class should be instantiated by the pluginlib once the main mode is started and initiates the load of the
CombinedRobotHW class.

The class uses the information from the param server to get details about the communication port configuration
and the attached devices. For each device interface the following parameters are read:

. . .

The class registers itself with the pluginlib by calling:

PLUGINLIB_EXPORT_CLASS(mh5_hardware::MH5I2CInterface, hardware_
→˓interface::RobotHW)

Public Functions

MH5I2CInterface()
Construct a new MH5I2CInterface object. Default constructor to support pluginlib.

~MH5I2CInterface()
Destroy the MH5I2CInterface object. Provided for pluginlib support.

bool init(ros::NodeHandle &root_nh, ros::NodeHandle &robot_hw_nh)
Initializes the interface.

Will open the system port port and the configuration of the devices associated with this interface. If either
of these fails it will return false.

Parameters

• root_nh – A NodeHandle in the root of the caller namespace.

• robot_hw_nh – A NodeHandle in the namespace from which the RobotHW should read
its configuration.

Returns true if initialization was successful

Returns false If the initialization was unsuccessful

void read(const ros::Time &time, const ros::Duration &period)
Performs the read of values for all the devices. Devices might have specific frequency preferences and
would compare the time / period provided with their own to decide if they indeed need to do anything.

Parameters

• time – The current time

• period – The time passed since the last call to read

void write(const ros::Time &time, const ros::Duration &period)
Performs the write of values for all the devices. Devices might have specific frequency preferences and
would compare the time / period provided with their own to decide if they indeed need to do anything.

Parameters

• time – The current time

8 Chapter 2. Package Reference

mh5_robot, Release C.1

• period – The time passed since the last call to read

Protected Functions

double calcLPF(double old_val, double new_val, double factor)

Protected Attributes

ros::NodeHandle nh_

const char *nss_

std::string port_name_

int port_

LSM6DS3 *imu_
IMU object.

double ang_vel_[3] = {0.0, 0.0, 0.0}
Stores the read velocities from the IMU converted to rad/s.

double lin_acc_[3] = {0.0, 0.0, 0.0}
Stores the read accelerations from the IMU converted in m/s^2.

double imu_lpf_ = 0.1
Low-pass filter factor for IMU.

double imu_loop_rate_
Keeps the desired execution rate (in Hz) the for IMU.

ros::Time imu_last_execution_time_
Stores the last time the IMU read was executed.

std::vector<double> imu_orientation_ = {0.0, 0.0, 0.0, 1.0}

hardware_interface::ImuSensorHandle imu_h_

hardware_interface::ImuSensorInterface imu_sensor_interface_

2.1.2 Supporting classes

2.1.2.1 class MH5PortHandler

class mh5_port_handler::PortHandlerMH5 : public PARENT

Public Functions

inline PortHandlerMH5(const char *port_name)

inline bool setRS485()

2.1. mh5_hardware reference 9

mh5_robot, Release C.1

2.1.2.2 class Joint

class mh5_hardware::Joint
Represents a Dynamixel servo with the registers and communication methods.

Also has convenience methods for creating HW interfaces for access by controllers.

Public Functions

inline Joint()
Default constructor.

void fromParam(ros::NodeHandle &hw_nh, std::string &name, mh5_port_handler::PortHandlerMH5
*port, dynamixel::PacketHandler *ph)

Uses information from the paramter server to initialize the Joint.

It will look for the following paramters in the server, under the joint name:

• id: the Dynamixel ID of the servo; if missing the joint will be marked as not prosent (ex. present_ =
false) and this will exclude it from all communication

• inverse: indicates that the joint has position values specified CW (default) are CCW see https:
//emanual.robotis.com/docs/en/dxl/x/xl430-w250/#drive-mode10 bit 0. If not present the default is
false

• offset: a value [in radians] that will be added to converted raw position from the hardware register
to report present position of servos in radians. Conversely it will be substracted from the desired
command position before converting to the raw position value to be stored in the servo.

Initializes the jointStateHandle_, jointPosVelHandle_ and jointActiveHandle_ attributes.

Parameters

• hw_nh – node handle to the harware interface

• name – name given to this joint

• port – Dynamixel port used for communication; should have been checked and opened
prior by the HW interface

• ph – Dynamixel port handler for communication; should have been checked and initialized
priod by the HW interface

inline uint8_t id()
Returns the Dynamixel ID of the joint.

Returns uint8_t the ID of the joint.

inline std::string name()
Returns the name of the joint.

Returns std::string the name of the joint.

inline bool present()
Returns if the joint is present (all settings are ok and communication with it was successfull).

Returns true if the joint is physically present

Returns false if the joint could not be detected

inline void setPresent(bool state)
Updates the present flag of the joint.

10 Chapter 2. Package Reference

https://emanual.robotis.com/docs/en/dxl/x/xl430-w250/#drive-mode10
https://emanual.robotis.com/docs/en/dxl/x/xl430-w250/#drive-mode10

mh5_robot, Release C.1

Parameters state – the desired state (true == present, false = not present)

bool ping(const int num_tries)
Performs a Dynamixel ping to the joint. It will try up to num_tries times in case there is no answer or there
are communication errors.

Parameters num_tries – how many tries to make if there are no answers

Returns true if the joint has responded

Returns false if the joint failed to respond after num_tries times

void initRegisters()
Hard-codes the initialization of the following registers in the joint (see https://emanual.robotis.com/docs/
en/dxl/x/xl430-w250/#control-table).

The registers are initialized as follows:

Register Address Value Comments
return delay 9 0 0 us delay time
drive mode 10 4 if no “inverse” mode set
drive mode 10 5 if “inverse” mode set
operating mode 11 3 position control mode
temperature limit 31 75 75 degrees Celsius
max voltage 32 135 13.5 V
velocity limit 44 1023 max velocity
max position 48 4095 max value
min position 52 0 min value

Other registers might be added in the future.

bool writeRegister(const uint16_t address, const int size, const long value, const int
num_tries)

Convenience method for writing a register to the servo. Depending on the size parameter it will call
write1ByteTxRx(), write2ByteTxRx() or write4ByteTxRx().

Parameters

• address – the address of the register to write to

• size – the size of the register to write to

• value – a value to write; it will be type casted to uint8_t, uint16_t or unit32_t depending
on the size parameter

• num_tries – number of times to try in case there are errors

Returns true if the write was sucessful

Returns false if there was a communication or hardware error

bool readRegister(const uint16_t address, const int size, long &value, const int num_tries)
Convenience method for reading a register frpm the servo. Depending on the size parameter it will call
read1ByteTxRx(), read2ByteTxRx() or read4ByteTxRx().

Parameters

• address – the address of the register to read from

• size – the size of the register to read

• value – a value to store the read result; it will be type casted to uint8_t, uint16_t or
unit32_t depending on the size parameter

2.1. mh5_hardware reference 11

https://emanual.robotis.com/docs/en/dxl/x/xl430-w250/#control-table
https://emanual.robotis.com/docs/en/dxl/x/xl430-w250/#control-table

mh5_robot, Release C.1

• num_tries – number of times to try in case there are errors

Returns true if the read was sucessful

Returns false if there was a communication or hardware error

bool reboot(const int num_tries)
Reboots the device by invoking the REBOOT Dynamixel instruction.

Parameters num_tries – how many tries to make if there are no answers

Returns true if the reboot was successful

Returns false if there were communication of harware errors

bool isActive(bool refresh = false)
Returns if the joint is active (torque on).

Parameters refresh – if this parameter is true it will force a re-read of the register 64 from
the servo otherwise it will report the cached value

Returns true the torque is active

Returns false the torque is inactive

bool torqueOn()
Sets torque on for the joint. Forces writing 1 in the register 64 of the servo.

Returns true if the activation was successfull

Returns false if there was an error (communication or hardware)

bool torqueOff()
Sets torque off for the joint. Forces writing 0 in the register 64 of the servo.

Returns true if the deactivation was successfull

Returns false if there was an error (communication or hardware)

inline bool shouldToggleTorque()
Indicates if there was a command to change the torque that was not yet completed. It simply returns the
active_command_flag_ member that should be set whenever a controllers wants to switch the torque status
and sets the active_command_.

Returns true there is a command that was not syncronised to hardware

Returns false there is no change in the status

inline void resetActiveCommandFlag()
Resets to false the active_command_flag_. Normally used by the sync loops after successful processing of
an update.

bool toggleTorque()
Changes the torque by writing into register 64 in the hardware using the active_command_ value. If the
change is successfull it will reset the active_command_flag_.

Returns true successful change

Returns false communication or harware error

inline bool shouldReboot()
Indicates if there was a command to reboot the joint that was not yet completed. It simply returns the
reboot_command_flag_ member that should be set whenever a controllers wants to reboot the joint.

Returns true there is a reset that was not syncronised to hardware

Returns false there is no change in the status

12 Chapter 2. Package Reference

mh5_robot, Release C.1

inline void resetRebootCommandFlag()
Resets to false the reboot_command_flag_. Normally used by the sync loops after successful processing
of an update.

inline uint8_t getRawTorqueActiveFromCommand()
Produces an internal format for torque status based on a desired command.

Returns uint8_t value suitable for writing to the hardware for the desired torque status.

inline void setPositionFromRaw(int32_t raw_pos)
Set the position_state_ (represented in radians) from a raw_pos that represents the value read from the
hardware. It takes into account the servo’s charactistics, and the offset with the formula:

position_state_ = (raw_pos - 2047) * 0.001533980787886 + offset_

Parameters raw_pos – a raw position as read from the hardware; this will already contain the
“inverse” classification.

inline void setVelocityFromRaw(int32_t raw_vel)
Set the velocity_state_ (represented in radians/sec) from a raw_vel that represents the value read from the
hardware. It takes into account the servo’s charactistics with the formula:

velocity_state_ = raw_vel * 0.023980823922402

Parameters raw_vel – a raw velocity as read from the hardware; this will already contain the
“inverse” classification and is also signed

inline void setEffortFromRaw(int32_t raw_eff)
Set the effort_state_ (represented in Nm) from a raw_eff that represents the value read from the hardware.
It takes into account the servo’s charactistics with the formula:

effort_state_ = raw_eff * 0.0014

Parameters raw_eff – a raw effort as read from the hardware; this will already contain the
“inverse” classification and is also signed

inline void setVoltageFromRaw(int16_t raw_volt)
Set the voltage_state_ (represented in V) from a raw_volt that represents the value read from the hardware.
The method simply divides with 100 and converts to double.

Parameters raw_volt – the value of voltage as read in hardware

inline void setTemperatureFromRaw(int8_t raw_temp)
Set the temperature_state_ (represented in degrees Celsius) from a raw_temp that represents the value read
from the hardware. The method simply converts to double.

Parameters raw_temp –

inline int32_t getRawPositionFromCommand()
Produces an internal format for position based on a desired command position (expressed in radians) using
the formula:

result = (position_command_ - offset_) / 0.001533980787886 + 2047

Returns int32_t a value suitable for writing to the hardware for the desired position in posi-
tion_command_ expressed in radians.

inline uint32_t getVelocityProfileFromCommand()
The velocity_command_ indicates the desired velocity (in rad/s) for the execution of the position com-
mands. Since we configure the servo in time profile mode, the command is translated into a desired
duration for the execution of the position command, that is after that stored into register 112. For this the
method calculates the delta between the desired position and the current position divided by the desired

2.1. mh5_hardware reference 13

mh5_robot, Release C.1

velocity, obtaining thus the desired duration for the move. The number is then multiplied with 1000 as the
harware expect the duration in ms. The full formula for the value is:

result = abs((position_command_ - position_state_) / velocity_command_) * 1000

Returns uint32_t a value suitable for writing to the hardware profile velocity for the desired
position in velocity_command_ expressed in radians/s.

inline const hardware_interface::JointStateHandle &getJointStateHandle()
Returns the handle to the joint position interface object for this joint.

Returns const hardware_interface::JointStateHandle&

inline const hardware_interface::PosVelJointHandle &getJointPosVelHandle()
Returns the handle to the joint position / velocity command interface object for this joint.

Returns const hardware_interface::PosVelJointHandle&

inline const mh5_hardware::JointTorqueAndReboot &getJointActiveHandle()
Returns the handle to the joint activation command interface object for this joint.

Returns const mh5_hardware::JointTorqueAndReboot&

Protected Attributes

std::string name_
The name of the joint.

mh5_port_handler::PortHandlerMH5 *port_
The communication port to be used.

dynamixel::PacketHandler *ph_
Dynamixel packet handler to be used.

ros::NodeHandle nh_
The node handler of the owner (hardware interface)

const char *nss_
Name of the owner as a c_str() - for easy printing of messages.

uint8_t id_
Servo ID.

bool present_
Servo is present (true) or not (false)

bool inverse_
Servo uses inverse rotation.

double offset_
Offest for servo from 0 position (center) in radians.

double position_state_
Current position in radians.

double velocity_state_
Current velocity in radians/s.

double effort_state_
Current effort in Nm.

double active_state_
Current torque state [0.0 or 1.0].

14 Chapter 2. Package Reference

mh5_robot, Release C.1

double voltage_state_
Current voltage [V].

double temperature_state_
Current temperature deg C.

double position_command_
Desired position in radians.

double velocity_command_
Desired velocity in radians/s.

bool poistion_command_flag_
Indicates that the controller has updated the desired poistion / velocity and is not yet syncronised.

double active_command_
Desired torque state [0.0 or 1.0].

bool active_command_flag_
Indicates that the controller has updated the desired torque state and is not yet syncronised.

bool reboot_command_flag_
Controller requested a reboot and is not yet syncronised.

hardware_interface::JointStateHandle jointStateHandle_
A handle that provides access to position, velocity and effort.

hardware_interface::PosVelJointHandle jointPosVelHandle_
A handle that provides access to desired position and desired velocity.

mh5_hardware::JointTorqueAndReboot jointActiveHandle_
A handle that provides access to desired torque state.

2.1.2.3 class LSM6DS3

class LSM6DS3 : public LSM6DS3Core

Public Functions

LSM6DS3(int port, uint8_t address)

~LSM6DS3() = default

status_t initialize(SensorSettings *pSettingsYouWanted = NULL)

int16_t readRawAccelX(void)

int16_t readRawAccelY(void)

int16_t readRawAccelZ(void)

int16_t readRawGyroX(void)

int16_t readRawGyroY(void)

int16_t readRawGyroZ(void)

double readFloatAccelX(void)

double readFloatAccelY(void)

double readFloatAccelZ(void)

double readFloatGyroX(void)

2.1. mh5_hardware reference 15

mh5_robot, Release C.1

double readFloatGyroY(void)

double readFloatGyroZ(void)

int16_t readRawTemp(void)

float readTempC(void)

float readTempF(void)

void fifoBegin(void)

void fifoClear(void)

int16_t fifoRead(void)

uint16_t fifoGetStatus(void)

void fifoEnd(void)

double calcGyro(int16_t)

double calcAccel(int16_t)

Public Members

SensorSettings settings

uint16_t allOnesCounter

uint16_t nonSuccessCounter

2.1.3 Syncronization Loops

2.1.3.1 class LoopWithCommunicationStats

class mh5_hardware::LoopWithCommunicationStats
Class that wrapps around a Dynaxmiel GroupSync process and can be executed with a given frequency. It
also keeps tabs on the communication statistics: total (since the start of the node) number of Dynamixel packs
executed, total number of errors encountered, as well as a shorter timeframe count of packets and errors that can
be reset and can be used to report “recent” statistics.

The class can produce a CommunicationStatsHandle for the registering with a controller that can publish these
statistics.

Subclassed by mh5_hardware::GroupSyncRead, mh5_hardware::GroupSyncWrite

Public Functions

inline LoopWithCommunicationStats(const std::string &name, double loop_rate)
Construct a new Communication Stats object.

Initializes the communication statistics to 0 and the last_execution_time_ to the current time.

Parameters

• name – will be the name used for the loop when registering with the resource manager

• loop_rate – the rate (in Hz) that the loop should execute. The Execute() method checks
if enough time has passed since last run, otherwise it will not be executed. This permits
the loop to be configured to run on a much lower rate than the owner loop.

16 Chapter 2. Package Reference

mh5_robot, Release C.1

inline ~LoopWithCommunicationStats()
Destroy the Communication Stats object.

inline const std::string getName()
Returns the name of the loop. Used for message genration.

Returns const std::string the name of the loop.

inline void resetStats()
Resets the recent statistics. Only the packets_ and errors_ are reset to 0, the total_packets_ and to-
tal_errors_ (that keep the cummulative packets since the start of the node) are not affected.

inline void resetAllStats()
Resets all statistics, including the totals.

inline const CommunicationStatsHandle &getCommStatHandle()
Returns a ros_control resource Handle to the communication statistics. Intendent to be called by the
main hardware interface in order to register the loop statistics as a resource with a controller that will
publish this statistics.

Returns const CommunicationStatsHandle& a ros_control resource handle

virtual bool prepare(std::vector<Joint*> joints) = 0
Prepare the loop (if necessary) based on the specifics of the loop and the joint information. This should
be called only once by the owner of the loop, imidiately after the constructor. The method needs to be
implemented in the subclass to perform (or just return a true) whatever is needed for that type of loop.

Parameters joints – an array of joints that might be needed in the preparation step

Returns true if the activity was successful

Returns false if there was an error performing the activity

virtual bool beforeCommunication(std::vector<Joint*> joints) = 0
This is an activity that needs to be performed each time in the loop just before the communication. This
allows the particular implementation of the loop to do activities required before the actual communication.

Parameters joints – an array of joints that might be needed in this step

Returns true if the activity was successful

Returns false if there was an error performing the activity

inline bool Execute(const ros::Time &time, const ros::Duration &period, std::vector<Joint*>
joints)

Wraps the actual communication steps so that it takes into account the requested processing rate and keeps
track of the communication statistics. If the call to Execute() is too early (no enough time has passed since
last run to account for the execution rate) the method will simply return true.

If enough time has passed, the method checks first if there was a request to reset the statistics then it will call
resetStats(). It will then call: beforeCommunication() and if this is not successfule it will stop and return
false. If the step above is successful it will increment the packets statistics and then call Communicate()
and check again the result. If this is not successfull it will increment the number of errors and return
false. If the communication was successfull it will call afterCommunication() and return the result of that
processing.

Parameters

• time – time to execute the method (typically close to now)

• period – the time passed since the last call to this method

• joints – an array of joints that need to be processed

Returns true if the processing (including the call to Communicate()) was successfull

2.1. mh5_hardware reference 17

mh5_robot, Release C.1

Returns false the call to Communicate() was unsuccessfull

virtual bool Communicate() = 0
Virtual method that needs to be impplemented by the subclasses depending on the actual work the loop is
doing (reading or writing).

Returns true the communication was successfull

Returns false the communication was not successfull

virtual bool afterCommunication(std::vector<Joint*> joints) = 0
This is an activity that needs to be performed each time in the loop just after the communication. This
allows the particular implementation of the loop to do activities required after the actual communication
(ex. for an read loop to retrieve the data from the response package and store it in the joints attributes).

Parameters joints – an array of joints that might be needed in this step

Returns true if the activity was successful

Returns false if there was an error performing the activity

Protected Functions

inline void incPackets()
Convenience method to increment the number of packets and total packets.

inline void incErrors()
Convenience method to increment the number of errors and total total.

Protected Attributes

double loop_rate_
Keeps the desired execution rate (in Hz) the for loop.

ros::Time last_execution_time_
Stores the last time the loop was executed.

long packets_
Number of packets transmited since last reset.

long errors_
Number of errors encountered since last reset.

long tot_packets_
Total number of packets transmitted since the start of node.

long tot_errors_
Total number of errors encountered since the start of node.

bool reset_
Keeps asyncronously the requests (from the controllers) to reset the statistics. The Execute() method will
check this and if set to true it will reset the statistics.

const CommunicationStatsHandle comm_stats_handle_
A ros_control resource type handle for passing to the resource manager and to be used by the con-
troller that publishes the statistics.

18 Chapter 2. Package Reference

mh5_robot, Release C.1

2.1.3.2 class GroupSyncRead

class mh5_hardware::GroupSyncRead : public GroupSyncRead, public mh5_hardware::LoopWithCommunicationStats
A specialization of the loop using a Dynamixel GroupSyncRead. Intended for reading data from a group of
dynamixels.

This specialization needs a start address and a data length that the loop will handle, implements the prepare()
method that calls addParam() for all IDs of joints that are marked as “present” and provides a specific imple-
mentation of the Communicate() method.

Subclassed by mh5_hardware::PVLReader, mh5_hardware::TVReader

Public Functions

inline GroupSyncRead(const std::string &name, double loop_rate, dynamixel::PortHandler
*port, dynamixel::PacketHandler *ph, uint16_t start_address, uint16_t
data_length)

Construct a new GroupSyncRead object which is an extension on a standard dynamixel GroupSyncRead.

Parameters

• name – the name of the loop; used for messages and for registering resources

• loop_rate – the rate the loop will be expected to run

• port – the dynamixel::PortHandler needed for the communication

• ph – the dynamixel::PacketHandler needed for communication

• start_address – the start addres for reading the data for all servos

• data_length – the length of the data to be read

virtual bool prepare(std::vector<Joint*> joints) override
Adds all the joints that are marked “present” to the processing loop by invoking the addParam() methods
of the dynamixel::GroupSyncRead. If there are errors there will be a warning printed.

Parameters joints – a vector of joints to used in the loop

Returns true if at least one joint has been added to the loop

Returns false if no joints has been suucessfully added to the loop

inline virtual bool beforeCommunication(std::vector<Joint*> joints) override
Simply returns true. SyncReads do not need any additional preparation before the communication.

Parameters joints – an array of joints that might be needed in this step

Returns true always

virtual bool Communicate() override
Particular implementation of the communication, specific to the GroupSyncRead. Calls txrxPacket() of
dynamixel::GroupSyncRead and checks the communication result.

Returns true if the communication was successful

Returns false if there was a communication error

2.1. mh5_hardware reference 19

mh5_robot, Release C.1

2.1.3.3 class GroupSyncWrite

class mh5_hardware::GroupSyncWrite : public GroupSyncWrite, public mh5_hardware::LoopWithCommunicationStats
A specialization of the loop using a Dynamixel GroupSyncWrite. Intended for writing data to a group of dy-
namixels.

This specialization needs a start address and a data length that the loop will handle, implements the beforeEx-
ecute() method that calls addParam() for all IDs of joints that are marked as “present” and provides a specific
implementation of the Communicate() method.

Subclassed by mh5_hardware::PVWriter, mh5_hardware::TWriter

Public Functions

inline GroupSyncWrite(const std::string &name, double loop_rate, dynamixel::PortHandler
*port, dynamixel::PacketHandler *ph, uint16_t start_address, uint16_t
data_length)

inline virtual bool prepare(std::vector<Joint*> joints)
Simply returns true. SyncWrites need to pre-prepare data foar each execution and this is implemented in
beforeExecute().

Parameters joints – an array of joints that might be needed in this step

Returns true always

inline virtual bool afterCommunication(std::vector<Joint*> joints)
Simply returns true. SyncWrites do not need any activities after communication.

Parameters joints – an array of joints that might be needed in this step

Returns true always

virtual bool Communicate() override
Particular implementation of the communication, specific to the GroupSyncWrite. Calls txPacket() of
dynamixel::GroupSyncWrite and checks the communication result.

Returns true if the communication was successful

Returns false if there was a communication error

2.1.3.4 class PVLReader

class mh5_hardware::PVLReader : public mh5_hardware::GroupSyncRead
Specialization of the GroupSyncRead to perform the read of the following registers for XL430 Dynamixel series:
present position, present velocity, present load (hence the name PVL).

Public Functions

inline PVLReader(const std::string &name, double loop_rate, dynamixel::PortHandler *port, dy-
namixel::PacketHandler *ph)

Construct a new PVLReader object. Uses 126 as the start of the address and 10 as the data_lenght.

Parameters

• name – the name of the loop; used for messages and for registering resources

• loop_rate – the rate the loop will be expected to run

• port – the dynamixel::PortHandler needed for the communication

20 Chapter 2. Package Reference

mh5_robot, Release C.1

• ph – the dynamixel::PacketHandler needed for communication

virtual bool afterCommunication(std::vector<Joint*> joints) override
Postprocessing of data after communication, specific to the position, velocity and load registers. Unpacks
the data from the returned response and calls the joints’ setPositionFromRaw(), setVelocityFromRaw(),
setEffortFromRaw() to update them. If there are errors there will be ROS_DEBUG messages issued but
the processing will not be stopped.

Parameters joints –

Returns true

Returns false

2.1.3.5 class PVWriter

class mh5_hardware::PVWriter : public mh5_hardware::GroupSyncWrite
Specialization of the GroupSyncWrite to perform the write of the following registers for XL430 Dynamixel
series: goal position, goal velocity (profile), (hence the name PVWriter). The Joint object handles the conver-
sion of commands (position, velocity) into (position, velocity profile) needed to control dynamixel XL430s in
velocity profile mode.

Public Functions

inline PVWriter(const std::string &name, double loop_rate, dynamixel::PortHandler *port, dy-
namixel::PacketHandler *ph)

Initializes the writer object with start address 108 and 12 bytes of information to be written (4 for position,
4 for velocity profile and 4 for acceleration profile)

Parameters

• name – the name of the loop

• loop_rate – the rate to be executed

• port – the Dynamixel port handle to be used for communication

• ph – the Dynamixel protocol handle to be used for communication

virtual bool beforeCommunication(std::vector<Joint*> joints) override
For each joint retrieves the desired position and velocity profile (determined internally by the Joint class
from the velocity command) and prepares a data buffer with the 12 bytes needed to update the goal position
(reg 116), velocity profile (reg. 112) and acceleration profile (reg. 108). Acceleration profile is hard-coded
to 1/4 of the velocity profile. Only joints that are “present” are taken into account.

Parameters joints – vector of joints for processing

Returns true if there is at least one joint that has been added to the loop

Returns false if no joints were added to the loop

2.1. mh5_hardware reference 21

mh5_robot, Release C.1

2.1.4 ros_control Hardware Interface

2.1.4.1 class JointHandleWithFlag

class mh5_hardware::JointHandleWithFlag : public JointHandle
Extends the hardware_interface::JointHandle with a boolean flag that indicates when a new command was
posted. This helps the HW interface decide if that value needs to be replicated to the servos or not.

Subclassed by mh5_hardware::JointTorqueAndReboot

Public Functions

JointHandleWithFlag() = default

inline JointHandleWithFlag(const JointStateHandle &js, double *cmd, bool *cmd_flag)
Construct a new JointHandleWithFlag object by extending the hardware_interface::JointHandle with an
additional boolean flag that indicates a new command has been issued.

Parameters

• js – the JointStateHandle that is commanded

• cmd – pointer to the command attribute in the HW interface

• cmd_flag – pointed to the bool flag in the HW interface that is used to indicate that the
value was changed and therefore needs to be synchronized by the HW.

inline void setCommand(double command)
Overrides the hardware_interface::JointHandle setCommand() method by setting the flag in the HW to true
to indicate that a new value was storred and therefore it needs to be synchronised after calling the inherited
method.

Parameters command – the command set to the joint

Private Members

bool *cmd_flag_ = {nullptr}
Keeps the pointed to the flag in the HW that indicates when value change.

class mh5_hardware::JointTorqueAndReboot : public mh5_hardware::JointHandleWithFlag

Public Functions

JointTorqueAndReboot() = default

inline JointTorqueAndReboot(const JointStateHandle &js, double *torque, bool
*torque_flag, bool *reboot_flag)

inline void setReboot(bool reboot)

inline bool getReboot()

22 Chapter 2. Package Reference

mh5_robot, Release C.1

Private Members

bool *reboot_flag_ = {nullptr}

2.1.4.2 class ActiveJointInterface

class ActiveJointInterface : public hardware_interface::HardwareResourceManager<JointTorqueAndReboot>
Joint that supports activation / deactivation.

To keep track of updates to the HW resource we use and additional flag that is set to true when a new command
is issued to the servo. The communication loops will use this flag to determine which servos really need to be
syncronised and will reset it once the synchronisation is finished.

2.1.4.3 class CommunicationStatsHandle

class mh5_hardware::CommunicationStatsHandle

Public Functions

CommunicationStatsHandle() = default

inline CommunicationStatsHandle(const std::string &name, const long *packets, const
long *errors, const long *tot_packets, const long
*tot_errors, bool *reset)

inline std::string getName() const

inline long getPackets() const

inline long getErrors() const

inline long getTotPackets() const

inline long getTotErrors() const

inline const long *getPacketsPtr() const

inline const long *getErrorsPtr() const

inline const long *getTotPacketsPtr() const

inline const long *getTotErrorsPtr() const

inline void setReset(bool reset)

Private Members

std::string name_

const long *packets_ = {nullptr}

const long *errors_ = {nullptr}

const long *tot_packets_ = {nullptr}

const long *tot_errors_ = {nullptr}

bool *reset_ = {nullptr}

2.1. mh5_hardware reference 23

mh5_robot, Release C.1

2.1.4.4 class CommunicationStatsInterface

class CommunicationStatsInterface : public hardware_interface::HardwareResourceManager<CommunicationStatsHandle>

2.2 mh5_controllers reference

2.2.1 class ActiveJointController

class mh5_controllers::ActiveJointController : public controller_interface::Controller<mh5_hardware::ActiveJointInterface>
Controller that can swithc on or off the torque on a group of Dynamixel servos.

Requires mh5_harware::ActiveJointInterfaces to be registered with the hardware interface. Reads “groups”
parameter from the param server, which should contain a list of groups that can be toggled in the same time. It
is possible to nest groups in each other as long as they build on each other.

Advertises a service /torque_control/switch_torque of type mh5_controllers/
ActivateJoint. The name passed in calls to this service can be individual joints or groups of joints.

rosservice call /torque_control/swtich_torque "{name: "head_p", state: true}"

of for a group:

rosservice call /torque_control/swtich_torque "{name: "head", state: true}"

Will simply turn on or off the torque on all the servos associated with the group.

Public Functions

inline ActiveJointController()
Construct a new Active Joint Controller object using a mh5_hardware::ActiveJointInterface interface.

inline ~ActiveJointController()
Destroy the Active Joint Controller object. Shuts also down the ROS service.

bool init(mh5_hardware::ActiveJointInterface *hw, ros::NodeHandle &n)
Initializes the controller by reading the joint list from the parameter server under “groups”. If no parameter
is provided it will create a group “all” and assign all avaialable resources to this group. If groups are defined
then they should be first listed in the “groups” parameter, then each one of them should be listed separately
with the joints, or subgroups that are included. If subgroups are used they have to be fully defined first,
befire they are used in a superior group.

This function also advertises the ROS service: /[controller name]/switch_torque

Parameters

• hw – the hardware interface that will provide the access to the repoces

• n – the nodehandle of the initiator controller

Returns true if there is at least one joint that has been successfully identified and registered with
this controller

Returns false if either no “joints” parameter was available in the param server or no joints has
been successfully retrieved from the hardware interface.

inline void starting(const ros::Time &time)
Does nothing in this case. Used for completing the controller interface.

24 Chapter 2. Package Reference

mh5_robot, Release C.1

Parameters time –

void update(const ros::Time&, const ros::Duration&)
Does the actual update of the joints’ torque activation member. Please note that this controller only sets
the field as provided by the mh5_hardware::ActiveJointInterface and it is not actually triggering any com-
munication with the actual servos. It is the hardware interface respoonsibility to replicate this requests to
the device.

Private Functions

bool torqueCB(mh5_controllers::ActivateJoint::Request &req, mh5_controllers::ActivateJoint::Response
&res)

Callback for processing “switch_torque” calls. Checks if the requested group exists or if there is a joint by
that name.

Parameters

• req – the service request; group/joint name + desired state

• res – the service response; if things are successful + detailed message

Returns true always

bool rebootCB(mh5_controllers::ActivateJoint::Request &req, mh5_controllers::ActivateJoint::Response
&res)

Callback for processing “reboot” calls. Checks if the requested group exists or if there is a joint by that
name.

Parameters

• req – the service request; group/joint name + desired state

• res – the service response; if things are successful + detailed message

Returns true always

Private Members

std::map<std::string, std::vector<mh5_hardware::JointTorqueAndReboot>> joints_
Map group->list of joint handles.

realtime_tools::RealtimeBuffer<ActivateJoint::Request> torque_commands_buffer_
Holds torque activation commands to be processed during the update() processings. The service callbacks
only store “true” or “false” in this buffer depending on the command processed.

realtime_tools::RealtimeBuffer<ActivateJoint::Request> reboot_commands_buffer_
Holds reboot commands to be processed during the update() processings. The service callbacks only store
“true” or “false” in this buffer depending on the command processed.

ros::ServiceServer torque_srv_
ROS Service that responds to the “switch_torque” calls.

ros::ServiceServer reboot_srv_
ROS Service that responds to the “reboot” calls.

2.2. mh5_controllers reference 25

mh5_robot, Release C.1

2.2.2 class ExtendedJointTrajectoryController

class mh5_controllers::ExtendedJointTrajectoryController : public controller_interface::MultiInterfaceController<hardware_interface::PosVelJointInterface, mh5_hardware::ActiveJointInterface>

Public Functions

inline ExtendedJointTrajectoryController()

bool init(hardware_interface::RobotHW *robot_hw, ros::NodeHandle &root_nh, ros::NodeHandle
&controller_nh)

void starting(const ros::Time &time)

void stopping(const ros::Time &time)

void update(const ros::Time &time, const ros::Duration &period)

Private Members

mh5_controllers::BaseJointTrajectoryController *pos_controller_

mh5_controllers::ActiveJointController *act_controller_

2.2.3 class CommunicationStatsController

class mh5_controllers::CommunicationStatsController : public controller_interface::Controller<mh5_hardware::CommunicationStatsInterface>
Publishes communication ststistics for all the Dynamixel loops registered in the hardware interface. Requires
mh5_hardware::CommunicationStatsInterface to access the statistics for all loops. If combined HW interface
is used please note that this will get all the loops, across all the physical HW interfaces that the combined HW
interface will start.

The messages are publish as diagnostic_msgs::DiagnosticArray under topic “diagnostics”. Aggregators can be
used to process thsese raw diagnostic messages and publish them to a RobotMonitor.

Public Functions

inline CommunicationStatsController()
Construct a new Communication Stats Controller object; defaults the publish period to 0.0.

bool init(mh5_hardware::CommunicationStatsInterface *hw, ros::NodeHandle &root_nh,
ros::NodeHandle &controller_nh)

Initializes the controller. Reads the parameter server “publish_period” [expressed in seconds] and uses it
for sheduling the publishing of the communication information. It defaults to 30s if no value is avaialable.
Please note that the publishing period is also used to reset the short time communication statistics that are
provided by the mh5_hardware::CommunicationStatsInterface.

It will setup the realtime publisher and allocate the message structure to accomodate the data from the
CommunicationStatsInterface.

Parameters

• hw – the hardware providing the loops; could be a Combined HW Interface

• root_nh – the top Node Handler

• controller_nh – the node handler of the controller; used to access the parameter
server

26 Chapter 2. Package Reference

mh5_robot, Release C.1

Returns true if controller was initialized sucessfully

void starting(const ros::Time &time)
Resets the last_publish_time_ to the provided time.

Parameters time – when the controller was started

void update(const ros::Time&, const ros::Duration&)
Performs the actual publishing of statistics by accesing the inteface data. It will check the last time the
message was published and does not do any publish if it is less than publish_period_ desired for these
message publishing.

Please note that after the massage is published it invokes the setReset(true) for the CommunicationStatsIn-
terface to reset to 0 the short-term statistics.

virtual void stopping(const ros::Time&)
Provided for completion of the controller interface.

Private Members

std::vector<mh5_hardware::CommunicationStatsHandle> communication_states_
Holds the list of handles to all the loops across all the HW interfaces.

std::shared_ptr<realtime_tools::RealtimePublisher<diagnostic_msgs::DiagnosticArray>> realtime_pub_
Publisher object.

ros::Time last_publish_time_
Keeps the last publish time. Updated every time we publish a new message.

double publish_period_
The desired publishing period in seconds for the diagnostoc messages.

2.3 mh5_director reference

2.3.1 class Director

class Director(portfolio_path=None)
The Director class

Reads script definitions from YAML files and can execute them by passing the pose information to the
dynamixel_control/follow_joint_trajectory action server.

Listens to the director/run topic for commands to execute a script.

load_scripts()
Loads XML definitions from the param server and stores them in the portfolios attribute.

setup_services()
Starts the subscriptions.

Director subscribes to: - director/run - used to trigger the execution of a script - . . .

setup_action_client()
Sets up the subscription to the dynamixel_control/follow_joint_trajectory action server.

The function will wait for the action server to become available.

run_script_callback(msg)
Callback for director/run

2.3. mh5_director reference 27

mh5_robot, Release C.1

The request script should be in the form: <portfolio.script>. Will log errors if the requested portfolio
or script in that portfolio doesn’t exist.

The information in the script is converted into a JointTrajectoryGoal and passed to the action server. If
the feedback attribute in the message is True, the script_feedback_callback() will be also submitted
to the send_goal() method of the action client. If the wait attribute in the message is True the method
will wait for the action server to finish before completing.

Parameters msg (RunScript) – message received

script_feedback_callback(feedback)
Provides feedback while running the script.

Parameters feedback (FollowJointTrajectoryFeedback) – the feedback provided
by the action server

2.3.2 class Portfolio

class Portfolio
A portfolio of scripts.

A Portfolio is a collection of scripts that can share certain elements like scenes and poses.

A portfolio is composed of the following elements:

name
the name of the Portfolio

units
Unit of measurements for positions angles. Only rad and deg allowed and by default it will be rad if no
attribute is specified in the souce XACRO. :type str

joints
The default list of joints to be used across the scripts in this portfolio. The order of joints is important as
all the positions sppecifications will assume the same order. A portfolio can use a subset of all the
joints of the robot and only the joints specified here will be passed when constructing the communcation
messages with the robots’ controllers. :type list(str)

duration
The default duration (in seconds) for poses in scenes. If scenes do not specify a duration= attribute,
they will inherit automatically this duration from the portfolio. :type float

poses
A dictionary of Pose() defined in this portfolio. type dict{name: Pose}

scenes
A dictionary of Scene() defined in this portfolio. type dict{name: Scene}

scripts
A dictionary of Script() defined in this portfolio. type dict{name: Script}

classmethod from_xml(xml_elem)
Constructs a Portfolio object by reading an XML defintion and parsing it.

Parameters xml_elem (xml.etree.ElementTree.ElementTree) – The XML ele-
ment with the structure of the portfolio.

Raises

• ValueError: – If the data is incorrect. Additional details are provided in the exception
text.

28 Chapter 2. Package Reference

mh5_robot, Release C.1

• AssertionError: – If attributes are missing or missmatched with the expected ones.

get_script_names()

to_joint_trajectory_goal(script_name, speed)

2.3.3 class Script

class Script

classmethod from_xml(xml_elem, portfolio)

2.3.4 class Scene

class Scene

classmethod from_xml(xml_elem, portfolio)

2.3.5 class Pose

class Pose
A Pose groups together the joints and the positions needed to produce a specific robot pose.

name
Pose name

Type str

joints
Joints used by the Pose. If the source XACRO did not use joints= the Pose will inherit by default all
the joints defined in the portfolio

Type list of str

positions
Positions for each of the joints associated with this Pose. Each position matches the order of joints and is
expressed in the unit of measures defined by the portfolio.

Type list of float

classmethod from_xml(xml_elem, portfolio)
Initializes the Pose from an XML element tree structure.

Parameters

• xml_elem (xml.etree.ElementTree.ElementTree) – The XML element tree
that contains the structure of the Pose

• portfolio (Portfolio) – The top Portfolio object that ownes this Pose

Returns The initiazed Pose object.

Return type Pose

Raises

• ValueError – If values included in the XML are incorrect. More details are provided
in the exception text.

2.3. mh5_director reference 29

mh5_robot, Release C.1

• AssertError – If certain attributes are not included in the XML. More details are pro-
vided in the exception text.

30 Chapter 2. Package Reference

CHAPTER

THREE

INDICES AND TABLES

• genindex

• modindex

• search

31

mh5_robot, Release C.1

32 Chapter 3. Indices and tables

INDEX

D
Director (class in director), 27
duration (Portfolio attribute), 28

F
from_xml() (Portfolio class method), 28
from_xml() (Pose class method), 29
from_xml() (Scene class method), 29
from_xml() (Script class method), 29

G
get_script_names() (Portfolio method), 29

J
joints (Portfolio attribute), 28
joints (Pose attribute), 29

L
load_scripts() (Director method), 27
LSM6DS3 (C++ class), 15
LSM6DS3::~LSM6DS3 (C++ function), 15
LSM6DS3::allOnesCounter (C++ member), 16
LSM6DS3::calcAccel (C++ function), 16
LSM6DS3::calcGyro (C++ function), 16
LSM6DS3::fifoBegin (C++ function), 16
LSM6DS3::fifoClear (C++ function), 16
LSM6DS3::fifoEnd (C++ function), 16
LSM6DS3::fifoGetStatus (C++ function), 16
LSM6DS3::fifoRead (C++ function), 16
LSM6DS3::initialize (C++ function), 15
LSM6DS3::LSM6DS3 (C++ function), 15
LSM6DS3::nonSuccessCounter (C++ member),

16
LSM6DS3::readFloatAccelX (C++ function), 15
LSM6DS3::readFloatAccelY (C++ function), 15
LSM6DS3::readFloatAccelZ (C++ function), 15
LSM6DS3::readFloatGyroX (C++ function), 15
LSM6DS3::readFloatGyroY (C++ function), 16
LSM6DS3::readFloatGyroZ (C++ function), 16
LSM6DS3::readRawAccelX (C++ function), 15
LSM6DS3::readRawAccelY (C++ function), 15

LSM6DS3::readRawAccelZ (C++ function), 15
LSM6DS3::readRawGyroX (C++ function), 15
LSM6DS3::readRawGyroY (C++ function), 15
LSM6DS3::readRawGyroZ (C++ function), 15
LSM6DS3::readRawTemp (C++ function), 16
LSM6DS3::readTempC (C++ function), 16
LSM6DS3::readTempF (C++ function), 16
LSM6DS3::settings (C++ member), 16

M
mh5_controllers::ActiveJointController

(C++ class), 24
mh5_controllers::ActiveJointController::~ActiveJointController

(C++ function), 24
mh5_controllers::ActiveJointController::ActiveJointController

(C++ function), 24
mh5_controllers::ActiveJointController::init

(C++ function), 24
mh5_controllers::ActiveJointController::joints_

(C++ member), 25
mh5_controllers::ActiveJointController::reboot_commands_buffer_

(C++ member), 25
mh5_controllers::ActiveJointController::reboot_srv_

(C++ member), 25
mh5_controllers::ActiveJointController::rebootCB

(C++ function), 25
mh5_controllers::ActiveJointController::starting

(C++ function), 24
mh5_controllers::ActiveJointController::torque_commands_buffer_

(C++ member), 25
mh5_controllers::ActiveJointController::torque_srv_

(C++ member), 25
mh5_controllers::ActiveJointController::torqueCB

(C++ function), 25
mh5_controllers::ActiveJointController::update

(C++ function), 25
mh5_controllers::CommunicationStatsController

(C++ class), 26
mh5_controllers::CommunicationStatsController::communication_states_

(C++ member), 27
mh5_controllers::CommunicationStatsController::CommunicationStatsController

(C++ function), 26

33

mh5_robot, Release C.1

mh5_controllers::CommunicationStatsController::init
(C++ function), 26

mh5_controllers::CommunicationStatsController::last_publish_time_
(C++ member), 27

mh5_controllers::CommunicationStatsController::publish_period_
(C++ member), 27

mh5_controllers::CommunicationStatsController::realtime_pub_
(C++ member), 27

mh5_controllers::CommunicationStatsController::starting
(C++ function), 27

mh5_controllers::CommunicationStatsController::stopping
(C++ function), 27

mh5_controllers::CommunicationStatsController::update
(C++ function), 27

mh5_controllers::ExtendedJointTrajectoryController
(C++ class), 26

mh5_controllers::ExtendedJointTrajectoryController::act_controller_
(C++ member), 26

mh5_controllers::ExtendedJointTrajectoryController::ExtendedJointTrajectoryController
(C++ function), 26

mh5_controllers::ExtendedJointTrajectoryController::init
(C++ function), 26

mh5_controllers::ExtendedJointTrajectoryController::pos_controller_
(C++ member), 26

mh5_controllers::ExtendedJointTrajectoryController::starting
(C++ function), 26

mh5_controllers::ExtendedJointTrajectoryController::stopping
(C++ function), 26

mh5_controllers::ExtendedJointTrajectoryController::update
(C++ function), 26

mh5_hardware::ActiveJointInterface (C++
class), 23

mh5_hardware::CommunicationStatsHandle
(C++ class), 23

mh5_hardware::CommunicationStatsHandle::CommunicationStatsHandle
(C++ function), 23

mh5_hardware::CommunicationStatsHandle::errors_
(C++ member), 23

mh5_hardware::CommunicationStatsHandle::getErrors
(C++ function), 23

mh5_hardware::CommunicationStatsHandle::getErrorsPtr
(C++ function), 23

mh5_hardware::CommunicationStatsHandle::getName
(C++ function), 23

mh5_hardware::CommunicationStatsHandle::getPackets
(C++ function), 23

mh5_hardware::CommunicationStatsHandle::getPacketsPtr
(C++ function), 23

mh5_hardware::CommunicationStatsHandle::getTotErrors
(C++ function), 23

mh5_hardware::CommunicationStatsHandle::getTotErrorsPtr
(C++ function), 23

mh5_hardware::CommunicationStatsHandle::getTotPackets
(C++ function), 23

mh5_hardware::CommunicationStatsHandle::getTotPacketsPtr
(C++ function), 23

mh5_hardware::CommunicationStatsHandle::name_
(C++ member), 23

mh5_hardware::CommunicationStatsHandle::packets_
(C++ member), 23

mh5_hardware::CommunicationStatsHandle::reset_
(C++ member), 23

mh5_hardware::CommunicationStatsHandle::setReset
(C++ function), 23

mh5_hardware::CommunicationStatsHandle::tot_errors_
(C++ member), 23

mh5_hardware::CommunicationStatsHandle::tot_packets_
(C++ member), 23

mh5_hardware::CommunicationStatsInterface
(C++ class), 24

mh5_hardware::GroupSyncRead (C++ class), 19
mh5_hardware::GroupSyncRead::beforeCommunication

(C++ function), 19
mh5_hardware::GroupSyncRead::Communicate

(C++ function), 19
mh5_hardware::GroupSyncRead::GroupSyncRead

(C++ function), 19
mh5_hardware::GroupSyncRead::prepare

(C++ function), 19
mh5_hardware::GroupSyncWrite (C++ class),

20
mh5_hardware::GroupSyncWrite::afterCommunication

(C++ function), 20
mh5_hardware::GroupSyncWrite::Communicate

(C++ function), 20
mh5_hardware::GroupSyncWrite::GroupSyncWrite

(C++ function), 20
mh5_hardware::GroupSyncWrite::prepare

(C++ function), 20
mh5_hardware::Joint (C++ class), 10
mh5_hardware::Joint::active_command_

(C++ member), 15
mh5_hardware::Joint::active_command_flag_

(C++ member), 15
mh5_hardware::Joint::active_state_ (C++

member), 14
mh5_hardware::Joint::effort_state_ (C++

member), 14
mh5_hardware::Joint::fromParam (C++ func-

tion), 10
mh5_hardware::Joint::getJointActiveHandle

(C++ function), 14
mh5_hardware::Joint::getJointPosVelHandle

(C++ function), 14
mh5_hardware::Joint::getJointStateHandle

(C++ function), 14
mh5_hardware::Joint::getRawPositionFromCommand

(C++ function), 13

34 Index

mh5_robot, Release C.1

mh5_hardware::Joint::getRawTorqueActiveFromCommand
(C++ function), 13

mh5_hardware::Joint::getVelocityProfileFromCommand
(C++ function), 13

mh5_hardware::Joint::id (C++ function), 10
mh5_hardware::Joint::id_ (C++ member), 14
mh5_hardware::Joint::initRegisters (C++

function), 11
mh5_hardware::Joint::inverse_ (C++ mem-

ber), 14
mh5_hardware::Joint::isActive (C++ func-

tion), 12
mh5_hardware::Joint::Joint (C++ function),

10
mh5_hardware::Joint::jointActiveHandle_

(C++ member), 15
mh5_hardware::Joint::jointPosVelHandle_

(C++ member), 15
mh5_hardware::Joint::jointStateHandle_

(C++ member), 15
mh5_hardware::Joint::name (C++ function), 10
mh5_hardware::Joint::name_ (C++ member),

14
mh5_hardware::Joint::nh_ (C++ member), 14
mh5_hardware::Joint::nss_ (C++ member), 14
mh5_hardware::Joint::offset_ (C++ mem-

ber), 14
mh5_hardware::Joint::ph_ (C++ member), 14
mh5_hardware::Joint::ping (C++ function), 11
mh5_hardware::Joint::poistion_command_flag_

(C++ member), 15
mh5_hardware::Joint::port_ (C++ member),

14
mh5_hardware::Joint::position_command_

(C++ member), 15
mh5_hardware::Joint::position_state_

(C++ member), 14
mh5_hardware::Joint::present (C++ func-

tion), 10
mh5_hardware::Joint::present_ (C++ mem-

ber), 14
mh5_hardware::Joint::readRegister (C++

function), 11
mh5_hardware::Joint::reboot (C++ function),

12
mh5_hardware::Joint::reboot_command_flag_

(C++ member), 15
mh5_hardware::Joint::resetActiveCommandFlag

(C++ function), 12
mh5_hardware::Joint::resetRebootCommandFlag

(C++ function), 12
mh5_hardware::Joint::setEffortFromRaw

(C++ function), 13
mh5_hardware::Joint::setPositionFromRaw

(C++ function), 13
mh5_hardware::Joint::setPresent (C++

function), 10
mh5_hardware::Joint::setTemperatureFromRaw

(C++ function), 13
mh5_hardware::Joint::setVelocityFromRaw

(C++ function), 13
mh5_hardware::Joint::setVoltageFromRaw

(C++ function), 13
mh5_hardware::Joint::shouldReboot (C++

function), 12
mh5_hardware::Joint::shouldToggleTorque

(C++ function), 12
mh5_hardware::Joint::temperature_state_

(C++ member), 15
mh5_hardware::Joint::toggleTorque (C++

function), 12
mh5_hardware::Joint::torqueOff (C++ func-

tion), 12
mh5_hardware::Joint::torqueOn (C++ func-

tion), 12
mh5_hardware::Joint::velocity_command_

(C++ member), 15
mh5_hardware::Joint::velocity_state_

(C++ member), 14
mh5_hardware::Joint::voltage_state_

(C++ member), 14
mh5_hardware::Joint::writeRegister (C++

function), 11
mh5_hardware::JointHandleWithFlag (C++

class), 22
mh5_hardware::JointHandleWithFlag::cmd_flag_

(C++ member), 22
mh5_hardware::JointHandleWithFlag::JointHandleWithFlag

(C++ function), 22
mh5_hardware::JointHandleWithFlag::setCommand

(C++ function), 22
mh5_hardware::JointTorqueAndReboot (C++

class), 22
mh5_hardware::JointTorqueAndReboot::getReboot

(C++ function), 22
mh5_hardware::JointTorqueAndReboot::JointTorqueAndReboot

(C++ function), 22
mh5_hardware::JointTorqueAndReboot::reboot_flag_

(C++ member), 23
mh5_hardware::JointTorqueAndReboot::setReboot

(C++ function), 22
mh5_hardware::LoopWithCommunicationStats

(C++ class), 16
mh5_hardware::LoopWithCommunicationStats::~LoopWithCommunicationStats

(C++ function), 16
mh5_hardware::LoopWithCommunicationStats::afterCommunication

(C++ function), 18
mh5_hardware::LoopWithCommunicationStats::beforeCommunication

Index 35

mh5_robot, Release C.1

(C++ function), 17
mh5_hardware::LoopWithCommunicationStats::comm_stats_handle_

(C++ member), 18
mh5_hardware::LoopWithCommunicationStats::Communicate

(C++ function), 18
mh5_hardware::LoopWithCommunicationStats::errors_

(C++ member), 18
mh5_hardware::LoopWithCommunicationStats::Execute

(C++ function), 17
mh5_hardware::LoopWithCommunicationStats::getCommStatHandle

(C++ function), 17
mh5_hardware::LoopWithCommunicationStats::getName

(C++ function), 17
mh5_hardware::LoopWithCommunicationStats::incErrors

(C++ function), 18
mh5_hardware::LoopWithCommunicationStats::incPackets

(C++ function), 18
mh5_hardware::LoopWithCommunicationStats::last_execution_time_

(C++ member), 18
mh5_hardware::LoopWithCommunicationStats::loop_rate_

(C++ member), 18
mh5_hardware::LoopWithCommunicationStats::LoopWithCommunicationStats

(C++ function), 16
mh5_hardware::LoopWithCommunicationStats::packets_

(C++ member), 18
mh5_hardware::LoopWithCommunicationStats::prepare

(C++ function), 17
mh5_hardware::LoopWithCommunicationStats::reset_

(C++ member), 18
mh5_hardware::LoopWithCommunicationStats::resetAllStats

(C++ function), 17
mh5_hardware::LoopWithCommunicationStats::resetStats

(C++ function), 17
mh5_hardware::LoopWithCommunicationStats::tot_errors_

(C++ member), 18
mh5_hardware::LoopWithCommunicationStats::tot_packets_

(C++ member), 18
mh5_hardware::MH5DynamixelInterface

(C++ class), 5
mh5_hardware::MH5DynamixelInterface::~MH5DynamixelInterface

(C++ function), 5
mh5_hardware::MH5DynamixelInterface::active_joint_interface

(C++ member), 7
mh5_hardware::MH5DynamixelInterface::baudrate_

(C++ member), 7
mh5_hardware::MH5DynamixelInterface::communication_stats_interface

(C++ member), 7
mh5_hardware::MH5DynamixelInterface::init

(C++ function), 5
mh5_hardware::MH5DynamixelInterface::initJoints

(C++ function), 6
mh5_hardware::MH5DynamixelInterface::initPort

(C++ function), 6
mh5_hardware::MH5DynamixelInterface::joint_state_interface

(C++ member), 7
mh5_hardware::MH5DynamixelInterface::joints_

(C++ member), 7
mh5_hardware::MH5DynamixelInterface::MH5DynamixelInterface

(C++ function), 5
mh5_hardware::MH5DynamixelInterface::nh_

(C++ member), 7
mh5_hardware::MH5DynamixelInterface::nss_

(C++ member), 7
mh5_hardware::MH5DynamixelInterface::num_joints_

(C++ member), 7
mh5_hardware::MH5DynamixelInterface::packetHandler_

(C++ member), 7
mh5_hardware::MH5DynamixelInterface::port_

(C++ member), 7
mh5_hardware::MH5DynamixelInterface::portHandler_

(C++ member), 7
mh5_hardware::MH5DynamixelInterface::pos_vel_joint_interface

(C++ member), 7
mh5_hardware::MH5DynamixelInterface::protocol_

(C++ member), 7
mh5_hardware::MH5DynamixelInterface::pvlReader_

(C++ member), 7
mh5_hardware::MH5DynamixelInterface::pvWriter_

(C++ member), 7
mh5_hardware::MH5DynamixelInterface::read

(C++ function), 6
mh5_hardware::MH5DynamixelInterface::rs485_

(C++ member), 7
mh5_hardware::MH5DynamixelInterface::setupDynamixelLoops

(C++ function), 7
mh5_hardware::MH5DynamixelInterface::setupLoop

(C++ function), 6
mh5_hardware::MH5DynamixelInterface::tvReader_

(C++ member), 7
mh5_hardware::MH5DynamixelInterface::tWriter_

(C++ member), 7
mh5_hardware::MH5DynamixelInterface::write

(C++ function), 6
mh5_hardware::MH5I2CInterface (C++ class),

8
mh5_hardware::MH5I2CInterface::~MH5I2CInterface

(C++ function), 8
mh5_hardware::MH5I2CInterface::ang_vel_

(C++ member), 9
mh5_hardware::MH5I2CInterface::calcLPF

(C++ function), 9
mh5_hardware::MH5I2CInterface::imu_

(C++ member), 9
mh5_hardware::MH5I2CInterface::imu_h_

(C++ member), 9
mh5_hardware::MH5I2CInterface::imu_last_execution_time_

(C++ member), 9
mh5_hardware::MH5I2CInterface::imu_loop_rate_

36 Index

mh5_robot, Release C.1

(C++ member), 9
mh5_hardware::MH5I2CInterface::imu_lpf_

(C++ member), 9
mh5_hardware::MH5I2CInterface::imu_orientation_

(C++ member), 9
mh5_hardware::MH5I2CInterface::imu_sensor_interface_

(C++ member), 9
mh5_hardware::MH5I2CInterface::init

(C++ function), 8
mh5_hardware::MH5I2CInterface::lin_acc_

(C++ member), 9
mh5_hardware::MH5I2CInterface::MH5I2CInterface

(C++ function), 8
mh5_hardware::MH5I2CInterface::nh_ (C++

member), 9
mh5_hardware::MH5I2CInterface::nss_

(C++ member), 9
mh5_hardware::MH5I2CInterface::port_

(C++ member), 9
mh5_hardware::MH5I2CInterface::port_name_

(C++ member), 9
mh5_hardware::MH5I2CInterface::read

(C++ function), 8
mh5_hardware::MH5I2CInterface::write

(C++ function), 8
mh5_hardware::PVLReader (C++ class), 20
mh5_hardware::PVLReader::afterCommunication

(C++ function), 21
mh5_hardware::PVLReader::PVLReader (C++

function), 20
mh5_hardware::PVWriter (C++ class), 21
mh5_hardware::PVWriter::beforeCommunication

(C++ function), 21
mh5_hardware::PVWriter::PVWriter (C++

function), 21
mh5_port_handler::PortHandlerMH5 (C++

class), 9
mh5_port_handler::PortHandlerMH5::PortHandlerMH5

(C++ function), 9
mh5_port_handler::PortHandlerMH5::setRS485

(C++ function), 9

N
name (Portfolio attribute), 28
name (Pose attribute), 29

P
Portfolio (class in portfolio), 28
Pose (class in portfolio), 29
poses (Portfolio attribute), 28
positions (Pose attribute), 29

R
run_script_callback() (Director method), 27

S
Scene (class in portfolio), 29
scenes (Portfolio attribute), 28
Script (class in portfolio), 29
script_feedback_callback() (Director

method), 28
scripts (Portfolio attribute), 28
setup_action_client() (Director method), 27
setup_services() (Director method), 27

T
to_joint_trajectory_goal() (Portfolio

method), 29

U
units (Portfolio attribute), 28

Index 37

	Package Description
	mh5_hardware package

	Package Reference
	mh5_hardware reference
	Main classes
	class MH5DynamixelInterface
	class MH5I2CInterface

	Supporting classes
	class MH5PortHandler
	class Joint
	class LSM6DS3

	Syncronization Loops
	class LoopWithCommunicationStats
	class GroupSyncRead
	class GroupSyncWrite
	class PVLReader
	class PVWriter

	ros_control Hardware Interface
	class JointHandleWithFlag
	class ActiveJointInterface
	class CommunicationStatsHandle
	class CommunicationStatsInterface

	mh5_controllers reference
	class ActiveJointController
	class ExtendedJointTrajectoryController
	class CommunicationStatsController

	mh5_director reference
	class Director
	class Portfolio
	class Script
	class Scene
	class Pose

	Indices and tables
	Index

